
Efficient Item Set Mining Supported by IMine
Index

Manohar.M , Bharathi.G

Department of Computer Science and Engineering
Gudlavalleru Engineering College

 Gudlavalleru—521356

Abstract-This paper presents the IMine index, a general and
compact structure which provides tight integration of item set
extraction in a relational DBMS. Since no constraint is
enforced during the index creation phase, IMine provides a
complete representation of the original database. To reduce the
I/O cost, data accessed together during the same extraction
phase are clustered on the same disk block. The IMine index
structure can be efficiently exploited by different item set
extraction algorithms. In particular, IMine data access
methods currently support the FP-growth and LCM v.2
algorithms, but they can straightforwardly support the
enforcement of various constraint categories. The IMine index
has been integrated into the PostgreSQL DBMS and exploits
its physical level access methods. Experiments, run for both
sparse and dense data distributions, show the efficiency of the
proposed index and its linear scalability also for large data sets.
Item set mining supported by the IMine index shows
performance always comparable with, and often (especially for
low supports) better than, state-of-the-art algorithms accessing
data on flat file.

Index Terms — Data mining, item set extraction, indexing.

1 INTRODUCTION
ASSOCIATION rule mining discovers correlations among
data items in a transactional database D. Each transaction in
D is a set of data items. Association rules are usually
represented in the form A→ B, where A and B are item sets,
i.e., sets of data items. Item sets are characterized by their
frequency of occurrence in D, which is called support. The
data to be analyzed is usually stored into binary files,
possibly extracted from a DBMS. Most algorithms [1], [2],
[3], [4], [5] exploit ad hoc main memory data structures to
efficiently extract item sets from a flat file. Recently, disk-
based extraction algorithms have been proposed to support
the extraction from large data sets [6], [7] but still dealing
with data stored in flat files. To reduce the computational
cost of item set extraction, different constraints may be
enforced [8], [9], [10], [11], among which the most simple is
the support constraint, which enforces a threshold on the
minimum support of the extracted item sets.
 Relational DBMSs exploit indices, which are ad hoc data
structures, to enhance query performance and support the
execution of complex queries. In this paper, we propose a
similar approach to support data mining queries. The IMine
index (Item set-Mine index) is a novel data structure that
provides a compact and complete representation of
transactional data supporting efficient item set extraction
from a relational DBMS. It is characterized by the following
properties:
1. It is a covering index. No constraint (e.g., support
constraint) is enforced during the index creation phase.

2. The IMine index is a general structure which can be
efficiently exploited by various item set extraction
algorithms.
3. The IMine physical organization supports efficient data
access during item set extraction.
4. IMine supports item set extraction in large data sets.

 The IMine index has been implemented into the
PostgreSQL open source DBMS [13]. Index data are
accessed through PostgreSQL physical level access
methods. The index performance has been evaluated by
means of a wide range of experiments with data sets
characterized by different size and data distribution. The
execution time of frequent item set extraction based on
IMine is always comparable with, and often (especially for
low supports) faster than, the state-of-the-art algorithms
(e.g., Prefix-Tree [14] and LCM v.2 [12]) accessing data on
flat file.
 This paper is organized as follows: Section 2 thoroughly
describes the IMine index by addressing its structure, its
data access methods, and its physical layout. Section 3
describes how the FP-growth and LCM v.2 algorithms may
exploit IMine to perform efficiently the extraction of item
sets. Section 4. Section 5 compares our approach with
previous work. Finally, Section 6 draws conclusions and
presents future developments of the proposed approach.

2 THE IMINE INDEX
The transactional data set D is represented, in the relational
model, as a relation R. Each tuple in R is a pair
(TransactionID, ItemID). The IMine index provides a
compact and complete representation of R. Hence, it allows
the efficient extraction of item sets from R, possibly
enforcing support or other constraints.

2.1 IMine Index Structure
The structure of the IMine index is characterized by two
components: the Item set-Tree and the Item-Btree. The two
components provide two levels of indexing. In the
following, we describe in more detail the I-Tree and the I-
Btree structures.

Fig. 1. Example data set.

Manohar.M et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1898-1903

1898

Fig. 2. IMine index for the example data set. (a) I-Tree. (b) I-Btree.

2.1.1 I-Tree
An effective way to compactly store transactional records is
to use a prefix-tree. Our current implementation of the I-
Tree is based on the FP-tree data structure [3], which is very
effective in providing a compact and lossless representation
of relation R. However, since the two index components are
designed to be independent, alternative I-Tree data
structures can be easily integrated in the IMine index.
 The I-Tree associated to relation R is actually a forest of
prefix-trees, where each tree represents a group of
transactions all sharing one or more items. Each node in the
I-Tree corresponds to an item in R. Each path in the I-Tree
is an ordered sequence of nodes and represents one or more
transactions in R. Each item in relation R is associated to
one or more I-Tree nodes and each transaction in R is
represented by a unique I-Tree path.
 Fig.1 reports (in a more succinct form than its actual
relational representation) a small data set used as a running
example, and Fig.2 shows the complete structure of the
corresponding IMine index. In the I-Tree paths (Fig. 2a),
nodes are sorted by decreasing support of the corresponding
items. In the case of items with the same support, nodes are
sorted by item lexicographical order. In the I-Tree, the
common prefix of two transactions is represented by a
single path. For instance, consider transactions 3, 4, and 9 in
the example data set. These transactions, once sorted as
described above, share the common prefix [e: 3, h: 3], which
is a single path in the I-Tree. Node [h: 3] is the root of two
subpaths, representing the remaining items in the considered
transactions. Each I-Tree node is associated with a node
support value, representing the number of transactions
which contain (without any different interleaved item) all
the items in the subpath reaching the node. For example, in
subpath [e: 3, h: 3], the support of node [h: 3] is 3.Hence,
this subpath represents three transactions (i.e., transactions
3, 4, and 9). Each item is associated to one or more nodes.

The item support is obtained by adding the support of all
nodes including the item.
 Nodes in the I-Tree are linked by means of pointers which
allow selectively loading from disk the index portion
necessary for the extraction task. Each node contains three
pointers to nodes in the tree. Each pointer stores the physical
location of the corresponding node. An arbitrary node (e.g.,
[p:3] in the example I-Tree in Fig. 2a) includes the
following links: 1) Parent pointer (continuous edge linking
node [p:3] to node [d:5]). 2) First child pointer (dashed edge
linking node [p: 3] to node [g: 2]). When a node has more
direct descendants, this pointer points to the first child node
inserted in the I-Tree. 3) Right brother pointer (dotted edge
linking node [p: 3] to node [n: 2]). When a node has many
brothers (i.e., direct descendants of the same father), the
pointer points to the first brother node inserted in the I-Tree
after the current node. These pointers allow both bottom-up
and top-down tree traversal, thus enabling item set
extraction with various types of constraints (see Section 3).
 The I-Tree is stored in the relational table TI-Tree, which
contains one record for each I-Tree node. Each record
contains node identifier, item identifier, node support, and
pointers to the parent, first child, and right brother nodes.
Each pointer stores the physical location (block number and
offset within the block) of the record in table TI-Tree
representing the corresponding node.
2.1.2 I-Btree
The I-Btree allows selectively accessing the I-Tree disk
blocks during the extraction process. It is based on a B+Tree
structure [15]. Fig. 2b shows the I-Btree for the example
data set and a portion of the pointed I-Tree. For each item i
in relation R, there is one entry in the I-Btree. In particular,
the I-Btree leaf associated to i contains i’s item support and
pointers to all nodes in the I-Tree associated to item i. Each
pointer stores the physical location of the record in table TI-

Tree storing the node. Fig. 2b shows the pointers to the I-Tree
nodes associated to item r.

2.2 IMine Data Access Methods
The IMine index structure is independent of the adopted
item set extraction algorithm. Hence, different state-of-the-
art algorithms may be employed, once data has been loaded
in memory. The in-memory representation suitable for the
selected extraction algorithm is employed (e.g., FP-tree for
FP-growth, array-based structure for LCM). Depending on
the enforced support and/or item constraints and on the
selected algorithm for item set extraction, a different portion
of the IMine index should be accessed. We devised three
data access methods to load from the IMine index the
following projections of the original database: 1) Frequent-
item based projection, to support projection-based
algorithms (e.g., FP-growth [3]). 2) Support-based
projection, to support level based (e.g., APRIORI [1]), and
array-based (e.g., LCM v.2 [12]) algorithms. 3) Item-based
projection, to load all transactions where a specific item
occurs, enabling constraint enforcement during the
extraction process. The three access methods are described
in the following sections.
2.2.1 Loading the Frequent-Item Projected Database
The Load_Freq_Item_Projected_DB access method reads
the frequent-item projected database (see Fig. 3). It is based
on the function Load_ Prefix _Path which loads a node

Manohar.M et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1898-1903

1899

prefix path by a bottom-up I-Tree visit exploiting the node
parent pointer. First, the I-Tree paths containing item α are
identified. By means of the I-Btree, the pointers to all the I-
Tree nodes for item α are accessed (function get_I-
Btree_leaves in line 1) and the corresponding nodes are read
from table TI-Tree. Then, for each node, its prefix path is read
(function Load Prefix Path in line 6). Starting from a given
node, the visit goes up the I-Tree by following the node
parent pointer until the tree root is reached (lines 10-
12).Once read, prefix paths are stored in an in-memory
representation of the projected database denoted as Dα(line
7). In each prefix path, node supports are normalized to the
node support of item α in the subpath to avoid considering
transactions not including α.
2.2.2 Loading the Support-Based Projected Database
The Load_Support_Projected_DB data access method loads
the support-projected database (see Fig. 4). It is based on the
function Load_SubTree, which reads a node subtree by
means

Fig. 3. Loading the frequent-item projected database.

Fig. 4. Loading the support-projected database.

of a top-down depth-first I-Tree visit exploiting both the
node child and brother pointers. First frequent items are
stored in set I MinSup. Item support is read from the
appropriate I-Btree leaf (function get_freq_items in line
1).Then, function Load_SubTree is invoked on each I-Tree
root to read it’s the Load_Support_Projected_DB data
access method loads the support-projected database (see Fig.
4).It is based on the function Load_SubTree, which reads a
node subtree by means of a top-down depth-first I-Tree visit
exploiting both the node child and brother pointers. First
frequent items are stored in set subtree (line 5). Starting
from a root node, the I-Tree is visited depth-first by
following the node child pointer (lines 12-14). The visit
ends when a node with an unfrequent item (lines 8-10) or a
node with no children (lines 15-16) is reached. The read
subpath is added to the in memory representation of the
projected database denoted as DMinSup .Then, the search
backtracks to the most recent node whose exploration is not
finished, i.e., a node with (at least) one brother node. By
following the brother pointer in the node, the brother node is
read and the visit of the I-Tree is restarted from there (lines
17-19). Since the I-Tree roots are linked by brother pointers,
when one root subtree has been completely explored, the
next root is reached (line 6) and the Load_SubTree function
is invoked on it.
2.2.3 Loading the Item-Projected Database
It exploits both the Load Prefix Path and Load SubTree
functions previously described in Sections 2.2.1 and 2.2.2.
The database transactions including a given item α are
represented by the I-Tree paths containing α. These paths
are selectively identified by means of the I-Btree, which
returns the pointers to all nodes for α. For each node, first its
prefix path is loaded by using the function
Load_Prefix_Path. Then, its subtree is read by means of the
function Load_SubTree. Each path obtained by the prefix
path and one of the subpaths in the subtree represents a set
of (complete) transactions including item α.

2.3 IMine Physical Organization
The physical organization of the IMine index is designed to
minimize the cost of reading the data needed for the current
extraction process. The I-Btree allows a selective access to
the I-Tree paths of interest. Hence, the I/O cost is mainly
given by the number of disk blocks read to load the required
I-Tree paths.

 To reduce the I/O cost, correlated index parts, i.e., parts
that are accessed together during the extraction task should
be clustered into the same disk block. The I-Tree physical
organization is based on the following correlation types:

 Intratransaction correlation. Extraction algorithms

consider together items occurring in the same
transaction. Items appearing in a transaction are thus
intrinsically correlated. To minimize the number of read
blocks, each I-Tree path should be partitioned in a
limited number of blocks.

 Intertransaction correlation. Transactions with some
items in common will be accessed together when item
sets including the common items are extracted.Hence;
they should be stored in the same blocks.

Manohar.M et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1898-1903

1900

2.3.1 I-Tree Layers
The I-Tree is partitioned in three layers based on the node
access frequency during the extraction processes. The three
layers are shown in Fig. 2a for the example I-Tree.
 Top layer. This layer includes nodes that are very
frequently accessed during the mining process. These nodes
are located in the upper levels of the I-Tree. They
correspond to items with high support, which are distributed
over few nodes with high node support.
 Middle layer. This layer includes nodes that are quite
frequently accessed during the mining process. These nodes
are typically located in the central part of the tree.
 Bottom layer. This layer includes the nodes
corresponding to rather low support items, which are rarely
accessed during the mining process.

2.3.2 I-Tree Path Correlation
Correlation among the subpaths within each layer is
analyzed to optimize the index storage on disk. Two paths
are correlated when a given percentage of items is common
to both paths.Each node may be shared by many paths;
redundancy in storing the paths might be introduced. To
prevent this effect, paths are partitioned in nonoverlapped
parts, named tracks. Each node (even if shared among
several paths) belongs to a single track. Correlation between
track pairs is then analyzed.
 Tracks are computed separately in each layer. Each layer
is bound by two borders, named upper and lower border,
which contain, respectively, the root and the tail nodes for
the subpaths in the layer. For a given layer, track
computation starts from nodes in its lower border. Each
node in the (lower) border is the tail node of a different
track. Nodes are considered based on their order into the
lower border. For each tail node, its prefix-path is visited
bottom-up. The visit ends when a node already included in a
previously computed track or included in the upper border
of the layer is reached. All visited nodes are assigned to the
new track.
 Correlation analysis is performed both in the Top and
Middle layers, which contain paths associated to items with
medium-high support. In the Bottom layer, instead, paths
usually share a negligible number of items and correlation
analysis becomes useless.

3 ITEM SET MINING
The IMine index is a disk resident data structure, the process
is structured in two sequential steps: 1) the needed index
data is loaded and 2) item set extraction takes place on
loaded data. Once data are in memory, the appropriate
algorithm for item set extraction can be applied.

3.1 Frequent Item Set Extraction
We present two approaches, denoted as FP-based and LCM-
based algorithms, which are an adaptation of the FP-Growth
algorithm [3] and LCM v.2 algorithm [12], respectively.

 FP-based algorithm.The FP-growth algorithm [3] stores
the data in a prefix-tree structure called FP-tree. First, it
computes item support. Then, for each transaction, it stores
in the FP-tree its subset including frequent items. Items are
considered one by one. For each item, extraction takes place
on the frequent-item projected database, which is generated

from the original FP-tree and represented in a FP-tree based
structure.
 The FP-based algorithm selects frequent items by means
of the get_freq_items function. For each item, the
corresponding projected database is loaded from the IMine
index by means of the Load_Freq_Item_Projected_DB
access method (Section 2.2.1). Then, the original FP-growth
algorithm [3] is run. With respect to [3], the FP-based
approach reduces memory occupation by loading in memory
only the projection exploited in the current extraction phase.
Hence, more memory space is available for the extraction
process.Data access overhead has been further reduced by
exploiting correlation.

 LCM-based algorithm.LCM v.2 algorithm [12]loads in
memory the support-based projection of the original
database. First, it reads the transactions to count item
support. Then, for each transaction, it loads the subset
including frequent items. Data are represented in memory
by means of an array-based data structure, on which the
extraction takes place.
 In the LCM-based algorithm, the database projection is
read from the IMine index by means of the
Load_Support_Projected_DB access method (Section
2.2.2). Data are stored in the appropriate array-based
structure, on which the original LCM v.2 algorithm [12] is
run. Since I-Tree paths concisely represent transactions,
reading the database projection from the IMine index
instead of from the original database is more effective in
large databases.

4 EXPERIMENTAL RESULTS
We ran the experiments for both dense and sparse data
distributions. Connect and Pumsb [16] are dense and
medium-size data sets. Kosarak [16] is a large and sparse
data set including click-stream data. For all data sets, the
index has been generated without enforcing any support
threshold.Both the index creation procedure and the item set
extraction algorithms are coded in Java language by using
swings on Windows operating system.

 Fig. 6 compares the FP-based algorithm with the Prefix-
tree [14] and FP-growth algorithms [3] on flat file, all
characterized by a similar extraction approach. For real data
sets (Connect, Pumsb, and Kosarak), differences in CPU
time between the FP-based and the Prefix-Tree algorithms
are not visible for high supports, while for low supports the
FP-based approach always performs better than Prefix-
Tree. The FP-based algorithm, albeit implemented into a
relational DBMS, yields performance always comparable
with and sometimes better than the other algorithms.

 As shown in Fig. 7, the LCM-based approach provides an
extraction time comparable to LCM v.2 on flat file. For
large data sets, it performs better than LCM v.2. Since I-
Tree paths compactly represent the transactions, reading the
needed data through the index requires a lower number of
I/O operations with respect to accessing the flat file
representation of the data set. This benefit increases when
the data set is larger and more correlated.

Manohar.M et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1898-1903

1901

Fig. 6. Frequent item set extraction time for the FP-based algorithm. (a)

Connect. (b) Pumsb. (c) Kosarak.

 4.1 Memory Consumption
 On the Kosarak data set, the peak main memory is always
significantly higher for the Prefix-Tree than for the FP-
based algorithm, while on the Pumsb data set the difference
between the two approaches is less relevant. The FP-based
approach selectively loads in memory only the data required
for the current extraction phase.

Fig. 7. Frequent item set extraction time for the LCM-based algorithm. (a)

Connect. (b) Pumsb. (c) Kosarak.

5 CONCLUSIONS AND FUTURE WORK
The IMine index is a novel index structure that supports
efficient item set mining into a relational DBMS. It has been
implemented into the PostgreSQL open source DBMS, by
exploiting its physical level access methods. The IMine
index provides a complete and compact representation of
transactional data. It is a general structure that efficiently
supports different algorithmic approaches to item set

Manohar.M et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1898-1903

1902

extraction. Selective access of the physical index blocks
significantly reduces the I/O costs and efficiently exploits
DBMS buffer management strategies. This approach, albeit
implemented into a relational DBMS, yields performance
better than the state-of-the-art algorithms (i.e., Prefix-Tree
[14] and LCM v.2 [12]) accessing data on a flat file and is
characterized by a linear scalability also for large data sets.
 As further extensions of this work, the following issues
may be addressed: 1) Compact structures suitable for
different data distributions. 2) Integration with a mining
language. 3) Incremental update of the index.

REFERENCES
[1] R. Agrawal and R. Srikant, “Fast Algorithm for Mining Association

Rules,” Proc. 20th Int’l Conf. Very Large Data Bases (VLDB ’94),
Sept. 1994.

[2] R. Agrawal, T. Imilienski, and A. Swami, “Mining Association Rules
between Sets of Items in Large Databases,” Proc. ACM SIGMOD
’93, May 1993.

[3] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate
Generation,” Proc. ACM SIGMOD, 2000.

[4] H. Mannila, H. Toivonen, and A.I. Verkamo, “Efficient Algorithms for
Discovering Association Rules,” Proc. AAAI Workshop Knowledge
Discovery in Databases (KDD ’94), pp. 181-192, 1994.

[5] A. Savasere, E. Omiecinski, and S.B. Navathe, “An Efficient Algorithm
for Mining Association Rules in Large Databases,”Proc. 21st Int’l
Conf. Very Large Data Bases (VLDB ’95), pp. 432-444, 1995.

[6] G. Grahne and J. Zhu, “Mining Frequent Itemsets from Secondary
Memory,” Proc. IEEE Int’l Conf. Data Mining (ICDM ’04), pp. 91-
98, 2004.

[7] G. Ramesh, W. Maniatty, and M. Zaki, “Indexing and Data Access
Methods for Database Mining,” Proc. ACM SIGMOD Workshop
Data Mining and Knowledge Discovery (DMKD), 2002.

[8] Y.L. Cheung, “Mining Frequent Itemsets without Support Threshold:
With and without Item Constraints,” IEEE Trans.Knowledge and
Data Eng., vol. 16, no. 9, pp. 1052-1069, Sept. 2004.

[9] G. Cong and B. Liu, “Speed-Up Iterative Frequent Itemset Mining with
Constraint Changes,” Proc. IEEE Int’l Conf. Data Mining (ICDM
’02), pp. 107-114, 2002.

[10] C.K.-S. Leung, L.V.S. Lakshmanan, and R.T. Ng, “Exploiting
Succinct Constraints Using FP-Trees,”SIGKDD Explorations
Newsletter,vol. 4, no. 1, pp. 40-49, 2002.

[11] R. Srikant, Q. Vu, and R. Agrawal, “Mining Association Rules with
Item Constraints,” Proc.Third Int’l Conf. Knowledge Discovery and
Data Mining (KDD ’97), pp. 67-73, 1997.

[12] T. Uno, M. Kiyomi, and H. Arimura, “LCM ver. 2: Efficient Mining
Algorithms for Frequent/Closed/Maximal Itemsets,”Proc. IEEE
ICDM Workshop Frequent Itemset Mining Implementations (FIMI),
2004.

[13]POSTGRESQL, http://www.postgresql.org, 2008.
[14] G. Grahne and J. Zhu, “Efficiently Using Prefix-Trees in Mining

Frequent Itemsets,” Proc. IEEE ICDM Workshop Frequent Itemset
Mining Implementations (FIMI ’03), Nov. 2003.

[15] R. Bayer and E.M. McCreight, “Organization and Maintenance of
Large Ordered Indices,” Acta Informatica, vol. 1, pp. 173-189, 1972.

[16] FIMI, http://fimi.cs.helsinki.fi/, 2008.

Manohar.M et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1898-1903

1903

