
Efficient Item Set Mining Supported by IMine 
Index 

 
Manohar.M  , Bharathi.G  

Department of Computer Science and Engineering 
Gudlavalleru Engineering College 

 Gudlavalleru—521356 
 
Abstract-This paper presents the IMine index, a general and 
compact structure which provides tight integration of item set 
extraction in a relational DBMS. Since no constraint is 
enforced during the index creation phase, IMine provides a 
complete representation of the original database. To reduce the 
I/O cost, data accessed together during the same extraction 
phase are clustered on the same disk block. The IMine index 
structure can be efficiently exploited by different item set 
extraction algorithms. In particular, IMine data access 
methods currently support the FP-growth and LCM v.2 
algorithms, but they can straightforwardly support the 
enforcement of various constraint categories. The IMine index 
has been integrated into the PostgreSQL DBMS and exploits 
its physical level access methods. Experiments, run for both 
sparse and dense data distributions, show the efficiency of the 
proposed index and its linear scalability also for large data sets. 
Item set mining supported by the IMine index shows 
performance always comparable with, and often (especially for 
low supports) better than, state-of-the-art algorithms accessing 
data on flat file. 
 
Index Terms — Data mining, item set extraction, indexing. 
 

1 INTRODUCTION 
ASSOCIATION rule mining discovers correlations among 
data items in a transactional database D. Each transaction in 
D is a set of data items. Association rules are usually 
represented in the form A→ B, where A and B are item sets, 
i.e., sets of data items. Item sets are characterized by   their 
frequency of occurrence in D, which is called support. The 
data to be analyzed is usually stored into binary files, 
possibly extracted from a DBMS. Most algorithms [1], [2], 
[3], [4], [5] exploit ad hoc main memory data structures to 
efficiently extract item sets from a flat file. Recently, disk-
based extraction algorithms have been proposed to support 
the extraction from large data sets [6], [7] but still dealing 
with data stored in flat files. To reduce the computational 
cost of item set extraction, different constraints may be 
enforced [8], [9], [10], [11], among which the most simple is 
the support constraint, which enforces a threshold on the 
minimum support of the extracted item sets. 
    Relational DBMSs exploit indices, which are ad hoc data 
structures, to enhance query performance and support the 
execution of complex queries. In this paper, we propose a  
similar approach to support data mining queries. The IMine 
index (Item set-Mine index) is a novel data structure that 
provides a compact and complete representation of 
transactional data supporting efficient item set extraction 
from a relational DBMS. It is characterized by the following 
properties: 
1. It is a covering index. No constraint (e.g., support 
constraint) is enforced during the index creation phase. 

2. The IMine index is a general structure which can be      
efficiently exploited by various item set extraction 
algorithms. 
3. The IMine physical organization supports efficient data 
access during item set extraction. 
4.  IMine supports item set extraction in large data sets. 
 
    The IMine index has been implemented into the 
PostgreSQL open source DBMS [13]. Index data are 
accessed through PostgreSQL physical level access 
methods. The index performance has been evaluated by 
means of a wide range of experiments with data sets 
characterized by different size and data distribution. The 
execution time of frequent item set extraction based on 
IMine is always comparable with, and often (especially for 
low supports) faster than, the state-of-the-art algorithms 
(e.g., Prefix-Tree [14] and LCM v.2 [12]) accessing data on 
flat file. 
    This paper is organized as follows: Section 2 thoroughly 
describes the IMine index by addressing its structure, its 
data access methods, and its physical layout. Section 3 
describes how the FP-growth and LCM v.2 algorithms may 
exploit IMine to perform efficiently the extraction of item 
sets. Section 4. Section 5 compares our approach with 
previous work. Finally, Section 6 draws conclusions and   
presents future developments of the proposed approach. 
 

2 THE IMINE INDEX 
The transactional data set D is represented, in the relational 
model, as a relation R. Each tuple in R is a pair 
(TransactionID, ItemID). The IMine index provides a 
compact and complete representation of R. Hence, it allows 
the efficient extraction of item sets from R, possibly 
enforcing support or other constraints. 
 
2.1 IMine Index Structure 
The structure of the IMine index is characterized by two 
components: the Item set-Tree and the Item-Btree. The two 
components provide two levels of indexing. In the 
following, we describe in more detail the I-Tree and the I-
Btree structures. 
 

 
Fig. 1. Example data set. 
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Fig. 2. IMine index for the example data set. (a) I-Tree. (b) I-Btree. 

 
2.1.1 I-Tree 
An effective way to compactly store transactional records is 
to use a prefix-tree. Our current implementation of the I-
Tree is based on the FP-tree data structure [3], which is very 
effective in providing a compact and lossless representation 
of relation R. However, since the two index components are 
designed to be independent, alternative I-Tree data 
structures can be easily integrated in the IMine index. 
    The I-Tree associated to relation R is actually a forest of 
prefix-trees, where each tree represents a group of 
transactions all sharing one or more items. Each node in the 
I-Tree corresponds to an item in R. Each path in the I-Tree 
is an ordered sequence of nodes and represents one or more 
transactions in R. Each item in relation R is associated to 
one or more I-Tree nodes and each transaction in  R is 
represented by a unique I-Tree  path. 
    Fig.1 reports (in a more succinct form than its actual 
relational representation) a small data set used as a running 
example, and Fig.2 shows the complete structure of the 
corresponding IMine index. In the I-Tree paths (Fig. 2a), 
nodes are sorted by decreasing support of the corresponding 
items. In the case of items with the same support, nodes are 
sorted by item lexicographical order. In the I-Tree, the 
common prefix of two transactions is represented by a 
single path. For instance, consider transactions 3, 4, and 9 in 
the example data set. These transactions, once sorted as 
described above, share the common prefix [e: 3, h: 3], which 
is a single path in the I-Tree. Node [h: 3] is the root of two 
subpaths, representing the remaining items in the considered 
transactions. Each I-Tree node is associated with a node 
support value, representing the number of transactions 
which contain (without any different interleaved item) all 
the items in the subpath reaching the node. For example, in 
subpath [e: 3, h: 3], the support of node [h: 3] is 3.Hence, 
this subpath represents three transactions (i.e., transactions 
3, 4, and 9). Each item is associated to one or more nodes. 

The item support is obtained by adding the support of all 
nodes including the item. 
    Nodes in the I-Tree are linked by means of pointers which 
allow selectively loading from disk the index portion 
necessary for the extraction task. Each node contains three 
pointers to nodes in the tree. Each pointer stores the physical 
location of the corresponding node. An arbitrary node (e.g., 
[p:3] in the example I-Tree in Fig. 2a)  includes  the  
following links: 1) Parent pointer (continuous edge linking  
node [p:3] to node [d:5]). 2) First child pointer (dashed edge 
linking node [p: 3] to node [g: 2]). When a node has more 
direct descendants, this pointer points to the first child node 
inserted in the I-Tree. 3) Right brother pointer (dotted edge 
linking node [p: 3] to node [n: 2]). When a node has many 
brothers (i.e., direct descendants of the same father), the 
pointer points to the first brother node inserted in the I-Tree 
after the current node. These pointers allow both bottom-up 
and top-down tree traversal, thus enabling item set 
extraction with various types of constraints (see Section 3). 
    The I-Tree is stored in the relational table TI-Tree, which 
contains one record for each I-Tree node. Each record 
contains node identifier, item identifier, node support, and 
pointers to the parent, first child, and right brother nodes. 
Each pointer stores the physical location (block number and 
offset within the block) of the record in table TI-Tree 
representing the corresponding node. 
2.1.2 I-Btree 
The I-Btree allows selectively accessing the I-Tree disk 
blocks during the extraction process. It is based on a B+Tree 
structure [15]. Fig. 2b shows the I-Btree for the example 
data set and a portion of the pointed I-Tree. For each item i 
in relation R, there is one entry in the I-Btree. In particular, 
the I-Btree leaf associated to i contains i’s item support and 
pointers to all nodes in the I-Tree associated to item i. Each 
pointer stores the physical location of the record in table TI-

Tree storing the node. Fig. 2b shows the pointers to the I-Tree 
nodes associated to item r. 
 
2.2 IMine Data Access Methods 
The IMine index structure is independent of the adopted 
item set extraction algorithm. Hence, different state-of-the-
art algorithms may be employed, once data has been loaded 
in memory. The in-memory representation suitable for the 
selected extraction algorithm is employed (e.g., FP-tree for 
FP-growth, array-based structure for LCM). Depending on 
the enforced support and/or item constraints and on the 
selected algorithm for item set extraction, a different portion 
of the IMine index should be accessed. We devised three 
data access methods to load from the IMine index the 
following projections of the original database: 1) Frequent-
item based projection, to support projection-based 
algorithms (e.g., FP-growth [3]). 2) Support-based 
projection, to support level based (e.g., APRIORI [1]), and 
array-based (e.g., LCM v.2 [12]) algorithms. 3) Item-based 
projection, to load all transactions where a specific item 
occurs, enabling constraint enforcement during the 
extraction process. The three access methods are described 
in the following sections. 
2.2.1 Loading the Frequent-Item Projected Database 
The Load_Freq_Item_Projected_DB access method reads 
the frequent-item projected database (see Fig. 3). It is based 
on the function Load_ Prefix _Path which loads a node 
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prefix path by a bottom-up I-Tree visit exploiting the node 
parent pointer. First, the I-Tree paths containing item α are 
identified. By means of the I-Btree, the pointers to all the I-
Tree nodes for item α are accessed (function get_I-
Btree_leaves in line 1) and the corresponding nodes are read 
from table TI-Tree. Then, for each node, its prefix path is read 
(function Load Prefix Path in  line 6). Starting from a given 
node, the visit goes up the I-Tree by following the node 
parent pointer until the tree root is reached (lines 10-
12).Once read, prefix paths are stored in an in-memory 
representation of the projected database denoted as Dα(line 
7). In each prefix path, node supports are normalized to the 
node support of item α in the subpath to avoid considering 
transactions not including α. 
2.2.2 Loading the Support-Based Projected Database 
The Load_Support_Projected_DB data access method loads 
the support-projected database (see Fig. 4). It is based on the 
function Load_SubTree, which reads a node subtree by 
means 

 
Fig. 3. Loading the frequent-item projected database. 

 
Fig. 4. Loading the support-projected database. 

of a top-down depth-first I-Tree visit exploiting both the 
node child and brother pointers. First frequent items are 
stored in set I MinSup. Item support is read from the 
appropriate I-Btree leaf (function get_freq_items in line 
1).Then, function Load_SubTree is invoked on each I-Tree 
root to read it’s the Load_Support_Projected_DB data 
access method loads the support-projected database (see Fig. 
4).It is based on the function Load_SubTree, which reads a 
node subtree by means of a top-down depth-first I-Tree visit 
exploiting both the node child and brother pointers. First 
frequent items are stored in set subtree (line 5). Starting 
from a root node, the I-Tree is visited depth-first by 
following the node child pointer (lines 12-14). The visit 
ends when a node with an unfrequent item (lines 8-10) or a 
node with no children (lines 15-16) is reached. The read 
subpath is added to the in memory  representation of the 
projected database denoted as DMinSup .Then, the search 
backtracks to the most recent node whose exploration is not 
finished, i.e., a node with (at least) one brother node. By 
following the brother pointer in the node, the brother node is 
read and the visit of the I-Tree is restarted from there (lines 
17-19). Since the I-Tree roots are linked by brother pointers, 
when one root subtree has been completely explored, the 
next root is reached (line 6) and the Load_SubTree function 
is invoked on it. 
2.2.3 Loading the Item-Projected Database 
It exploits both the Load Prefix Path and Load SubTree 
functions previously described in Sections 2.2.1 and 2.2.2. 
The database transactions including a given item α are 
represented by the I-Tree paths containing α. These paths 
are selectively identified by means of the I-Btree, which 
returns the pointers to all nodes for α. For each node, first its 
prefix path is loaded by using the function 
Load_Prefix_Path. Then, its subtree is read by means of the 
function Load_SubTree. Each path obtained by the prefix 
path and one of the subpaths in the subtree represents a set 
of (complete) transactions including item α. 
 
2.3 IMine Physical Organization 
The physical organization of the IMine index is designed to 
minimize the cost of reading the data needed for the current 
extraction process. The I-Btree allows a selective access to 
the I-Tree paths of interest. Hence, the I/O cost is mainly 
given by the number of disk blocks read to load the required 
I-Tree paths. 
 
    To reduce the I/O cost, correlated index parts, i.e., parts 
that are accessed together during the extraction task should 
be clustered into the same disk block. The I-Tree physical 
organization is based on the following correlation types: 
 
 Intratransaction correlation. Extraction algorithms 

consider together items occurring in the same 
transaction. Items appearing in a transaction are thus 
intrinsically correlated. To minimize the number of read 
blocks, each I-Tree path should be partitioned in a 
limited number of blocks. 

 Intertransaction correlation. Transactions with some 
items in common will be accessed together when item 
sets including the common items are extracted.Hence; 
they should be stored in the same blocks. 
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2.3.1 I-Tree Layers 
The I-Tree is partitioned in three layers based on the node 
access frequency during the extraction processes. The three 
layers are shown in Fig. 2a for the example I-Tree. 
    Top layer. This layer includes nodes that are very 
frequently accessed during the mining process. These nodes 
are located in the upper levels of the I-Tree. They 
correspond to items with high support, which are distributed 
over few nodes with high node support. 
    Middle layer. This layer includes nodes that are quite 
frequently accessed during the mining process. These nodes 
are typically located in the central part of the tree. 
    Bottom layer. This layer includes the nodes 
corresponding to rather low support items, which are rarely 
accessed during the mining process. 
 
2.3.2 I-Tree Path Correlation 
Correlation among the subpaths within each layer is 
analyzed to optimize the index storage on disk. Two paths 
are correlated when a given percentage of items is common 
to both paths.Each node may be shared by many paths; 
redundancy in storing the paths might be introduced. To 
prevent this effect, paths are partitioned in nonoverlapped 
parts, named tracks. Each node (even if shared among 
several paths) belongs to a single track. Correlation between 
track pairs is then analyzed. 
    Tracks are computed separately in each layer. Each layer 
is bound by two borders, named upper and lower border, 
which contain, respectively, the root and the tail nodes for 
the subpaths in the layer. For a given layer, track 
computation starts from nodes in its lower border. Each 
node in the (lower) border is the tail node of a different 
track. Nodes are considered based on their order into the 
lower border. For each tail node, its prefix-path is visited 
bottom-up. The visit ends when a node already included in a 
previously computed track or included in the upper border 
of the layer is reached. All visited nodes are assigned to the 
new track. 
    Correlation analysis is performed both in the Top and 
Middle layers, which contain paths associated to items with 
medium-high support. In the Bottom layer, instead, paths 
usually share a negligible number of items and correlation 
analysis becomes useless. 
 
3 ITEM SET MINING 
The IMine index is a disk resident data structure, the process 
is structured in two sequential steps: 1) the needed index 
data is loaded and 2) item set extraction takes place on 
loaded data. Once data are in memory, the appropriate 
algorithm for item set extraction can be applied. 
 
3.1 Frequent Item Set Extraction 
We present two approaches, denoted as FP-based and LCM-
based algorithms, which are an adaptation of the FP-Growth 
algorithm [3] and LCM v.2 algorithm [12], respectively. 
 
     FP-based algorithm.The FP-growth algorithm [3] stores 
the data in a prefix-tree structure called FP-tree. First, it 
computes item support. Then, for each transaction, it stores 
in the FP-tree its subset including frequent items. Items are 
considered one by one. For each item, extraction takes place 
on the frequent-item projected database, which is generated 

from the original FP-tree and represented in a FP-tree based 
structure. 
    The FP-based algorithm selects frequent items by means 
of the get_freq_items function. For each item, the 
corresponding projected database is loaded from the IMine 
index by means of the          Load_Freq_Item_Projected_DB 
access method (Section 2.2.1). Then, the original FP-growth 
algorithm [3] is run. With respect to [3], the FP-based 
approach reduces memory occupation by loading in memory 
only the projection exploited in the current extraction phase. 
Hence, more memory space is available for the extraction 
process.Data access overhead has been further reduced by 
exploiting correlation. 
 
    LCM-based algorithm.LCM v.2 algorithm [12]loads in 
memory the support-based projection of the original 
database. First, it reads the transactions to count item 
support. Then, for each transaction, it loads the subset 
including frequent items. Data are represented in memory 
by means of an array-based data structure, on which the 
extraction takes place. 
    In the LCM-based algorithm, the database projection is 
read from the IMine index by means of the 
Load_Support_Projected_DB access method (Section 
2.2.2). Data are stored in the appropriate array-based 
structure, on which the original LCM v.2 algorithm [12] is 
run. Since I-Tree paths concisely represent transactions, 
reading the database projection   from the IMine index 
instead of from the original database is more effective in 
large databases. 
 

4 EXPERIMENTAL RESULTS 
We ran the experiments for both dense and sparse data 
distributions. Connect and Pumsb [16] are dense and 
medium-size data sets. Kosarak [16] is a large and sparse 
data set including click-stream data. For all data sets, the 
index has been generated without enforcing any support 
threshold.Both the index creation procedure and the item set 
extraction algorithms are coded in Java language by using 
swings on Windows operating system. 
 
    Fig. 6 compares the FP-based algorithm with the Prefix-
tree [14] and FP-growth algorithms [3] on flat file, all 
characterized by a similar extraction approach. For real data 
sets (Connect, Pumsb, and Kosarak), differences in CPU 
time between the FP-based and the Prefix-Tree algorithms 
are not visible for high supports, while for low supports the 
FP-based approach always   performs   better   than   Prefix-
Tree.  The      FP-based algorithm, albeit implemented into a 
relational DBMS, yields performance always comparable 
with and sometimes better than the other algorithms. 
 
    As shown in Fig. 7, the LCM-based approach provides an 
extraction time comparable to LCM v.2 on flat file. For 
large data sets, it performs better than LCM v.2. Since I-
Tree paths compactly represent the transactions, reading the 
needed data through the index requires a lower number of 
I/O operations with respect to accessing the flat file 
representation of the data set. This benefit increases when 
the data set is larger and more correlated. 
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Fig. 6. Frequent item set extraction time for the FP-based algorithm. (a) 

Connect. (b) Pumsb. (c) Kosarak. 
  
 
 4.1 Memory Consumption 
    On the Kosarak data set, the peak main memory is always 
significantly higher for the Prefix-Tree than for the FP-
based algorithm, while on the Pumsb data set the difference 
between the two approaches is less relevant. The FP-based 
approach selectively loads in memory only the data required 
for the current extraction phase.  
 

 
 

 
 
 

 
Fig. 7. Frequent item set extraction time for the LCM-based algorithm. (a) 

Connect. (b) Pumsb. (c) Kosarak. 
 

5 CONCLUSIONS AND FUTURE WORK 
The IMine index is a novel index structure that supports 
efficient item set mining into a relational DBMS. It has been 
implemented into the PostgreSQL open source DBMS, by 
exploiting its physical level access methods. The IMine 
index provides a complete and compact representation of 
transactional data. It is a general structure that efficiently 
supports different algorithmic approaches to item set 
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extraction. Selective access of the physical index blocks 
significantly reduces the I/O costs and efficiently exploits 
DBMS buffer management strategies. This approach, albeit 
implemented into a relational DBMS, yields performance 
better than the state-of-the-art algorithms (i.e., Prefix-Tree 
[14] and LCM v.2 [12]) accessing data on a flat file and is 
characterized by a linear scalability also for large data sets. 
    As further extensions of this work, the following issues 
may be addressed: 1) Compact structures suitable for 
different data distributions. 2) Integration with a mining 
language. 3) Incremental update of the index. 
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